熱處理變形形式及原因
作者:上海川奇機電設備有限公司 | 發布時間:2024-07-10 |
載入中...
一、 變形的原因
鋼的變形主要原因是鋼中存在內應力或者外部施加的應力。內應力是因溫度分布不均勻或者相變所致,殘余應力也是原因之一。外應力引起的變形主要是由于工件自重而造成的“塌陷”,在特殊情況下也應考慮碰撞被加熱的工件,或者夾持工具夾持所引起的凹陷等。變形包括彈性變形和塑性變形兩種。尺寸變化主要是基于組織轉變,故表現出同樣的膨脹和收縮,但當工件上有孔穴或者復雜形狀工件,則將導致附加的變形。如果淬火形成大量馬氏體則發生膨脹,如果產生大量殘余奧氏體則相應的要收縮。此外,回火時一般發生收縮,而出現二次硬化現象的合金鋼則發生膨脹,如果進行深冷處理,則由于殘余奧氏體的馬氏體化而進一步膨脹,這些組織的比容都隨著含碳量的增加而增大,故含碳量增加也使尺寸變化量增大。
二、 淬火變形的主要發生時段
1 加熱過程:工件在加熱過程中,由于內應力逐漸釋放而產生變形。
2 保溫過程:以自重塌陷變形為主,即塌陷彎曲。
3 冷卻過程:由于不均勻冷卻和組織轉變而至變形。
三、 熱處理變形形式
1、加熱與變形
當加熱大型工件時,存在殘余應力或者加熱不均勻,均可產生變形。殘余應力主要來源于加工過程。當存在這些應力時,由于隨著溫度的升高,鋼的屈服強度逐漸下降,即使加熱很均勻,很輕微的應力也會導致變形。
一般,工件的外緣部位殘余應力較高,當溫度的上升從外部開始進行時,外緣部位變形較大,殘余應力引起的變形包括彈性變形和塑性變形兩種。
加熱時產生的熱應力和想變應力都是導致變形的原因。加熱速度越快、工件尺寸越大、截面變化越大,則加熱變形越大。熱應力取決于溫度的不均勻分布程度和溫度梯度,它們都是導致熱膨脹發生差異的原因。如果熱應力高于材料的高溫屈服點,則引起塑性變形,這種塑性變形就表現為“變形”。
相變應力主要源于相變的不等時性,即材料一部分發生相變,而其它部分還未發生相變時產生的。加熱時材料的組織轉變成奧氏體發生體積收縮時可出現塑性變形。如果材料的各部分同時發生相同的組織轉變,則不產生應力。為此,緩慢加熱可以適當降低加熱變形,最好采用預熱。
此外,由于加熱中因自重而出現“塌陷”變形的情況非常多,加熱溫度越高,加熱時間越長,“塌陷”現象越嚴重。
2、冷卻與變形
冷卻不均時將產生熱應力導致變形發生。因工件的外緣和內部存在冷卻速度差異,該熱應力是不可避免的,淬火情況下,熱應力與組織應力疊加,變形更為復雜。加之組織的不均勻、脫碳等,還會導致相變點出現差異,相變的膨脹量也有所不同。
總之,“變形”是相變應力和熱應力共同所致,但并非全部應力都消耗在變形上,而是一部分作為殘余應力存在于工件中,這種應力就是導致時效變形和時效裂紋的原因。
因冷卻而導致的變形表現為以下幾種形式:
1)件急冷初期,急冷的一側凹陷,然后轉為凸起,結果快冷的一面凸起,這種情況屬于熱應力引起的變形大于相變引起的變形。
2) 由熱應力所引起的變形使鋼料趨于球形化(見圖1),而由相變應力所引起的變形則使之趨于繞線軸狀(見圖2)。因此淬火冷卻所致的變形表現為兩者的結合(圖3),按照淬火方式的不同,表現出不同的變形如圖4所示。
3 )只有對內孔部分淬火時,內孔收縮。將整個環形工件加熱整體淬火時,其外徑總是增大,而內徑則根據尺寸的不同時漲時縮,一般內徑大時,內孔漲大,內徑小時,內孔收縮。
5、冷處理與變形
冷處理促進馬氏體轉變,溫度較低,產生的變形比淬火冷卻要小,但此時產生的應力較大,由于殘余應力、相變應力和熱應力等的疊加容易導致開裂。
6、 回火與變形
工件在回火過程中由于內應力的均勻化、減小甚至消失,加上組織發生變化,變形趨于減小,但同時,一旦出現變形,也是很難矯正的。為了矯正這種變形,多采用加壓回火或噴丸硬化等方法。
7、 重復淬火與變形
通常情況下,一次淬火后的工件未經過中間退火而進行重復淬火,將增大變形。圖5為重復淬火引起的變形,經過重復淬火,其變形累加而趨于球狀,容易產生龜裂,但形狀相對穩定了,不再容易產生變形了,因此重復淬火前應增加中間退火,重復淬火次數應小于等于2次(不含首次淬火)。
8、殘余應力與變形
加熱過程中,在450℃左右,鋼由彈性體轉變為塑性體,因此很容易呈上升塑性變形。同時,殘余應力在約高于此溫度時也將因再結晶而消失。因此,快速加熱時,由于工件內外部存在溫度差,外部達到450℃變成了塑性區,受而內部溫度較低處存在殘余應力作用而發生變形,冷卻后,該區域就是出現變形的地方。由于實際生產過程中,很難實現均勻、緩慢加熱,淬火前進行消除應力退火是非常重要的,除了通過加熱消除應力外,對于大型零件采用振動消除應力也是有效的。
尊重版權,轉載請注明出處:http://www.xznrj.com